Learning Non-linear Multivariate Dynamics of Motion in Robotic Manipulators
نویسندگان
چکیده
Motion imitation requires reproduction of a dynamical signature of a movement, i.e. a robot should be able to encode and reproduce a particular path together with a specific velocity and/or an acceleration profile. Furthermore, a human provides only few demonstrations, that cannot cover all possible contexts in which the robot will need to reproduce the motion autonomously. Therefore, the encoding should be able to efficiently generalize knowledge by generating similar motions in unseen context. This work follows a recent trend in Programming by Demonstration in which the dynamics of the motion is learned. We present an algorithm to estimate multivariate robot motions through a Mixture of Gaussians. The strengths of the proposed encoding are three-fold: i) it allows to generalize a motion to unseen context; ii) it provides fast on-line replanning of the motion in the face of spatio-temporal perturbations; iii) it may embed different types of dynamics, governed by different attractors. The generality of the method to estimate arbitrary nonlinear motion dynamics is demonstrated by accurately estimating a set of known non-linear dynamical systems. The platformindependency and real-time performance of the method are further validated to learn the non-linear motion dynamics of manipulation tasks with different robotic platforms. We provide an experimental comparison of our approach with an related state-of-the-art method.
منابع مشابه
Discrete-time repetitive optimal control: Robotic manipulators
This paper proposes a discrete-time repetitive optimal control of electrically driven robotic manipulators using an uncertainty estimator. The proposed control method can be used for performing repetitive motion, which covers many industrial applications of robotic manipulators. This kind of control law is in the class of torque-based control in which the joint torques are generated by permanen...
متن کاملOptimal discrete-time control of robot manipulators in repetitive tasks
Optimal discrete-time control of linear systems has been presented already. There are some difficulties to design an optimal discrete-time control of robot manipulator since the robot manipulator is highly nonlinear and uncertain. This paper presents a novel robust optimal discrete-time control of electrically driven robot manipulators for performing repetitive tasks. The robot performs repetit...
متن کاملDynamics and Motion Control of Wheeled Robotic Systems
Mobile robotic systems, which include a mobile platform with one or more manipulators, mounted at specific locations on the mobile base, are of great interest in a number of applications. In this paper, after thorough kinematic studies on the platform and manipulator motions, a systematic methodology will be presented to obtain the dynamic equations for such systems without violating the base n...
متن کاملDynamics and Motion Control of Wheeled Robotic Systems
Mobile robotic systems, which include a mobile platform with one or more manipulators, mounted at specific locations on the mobile base, are of great interest in a number of applications. In this paper, after thorough kinematic studies on the platform and manipulator motions, a systematic methodology will be presented to obtain the dynamic equations for such systems without violating the base n...
متن کاملLearning the Nonlinear Multivariate Dynamics of Motion of Robotic Manipulators
Motion imitation requires reproduction of a dynamical signature of a movement, i.e. a robot should be able to encode and reproduce a particular path together with a specific velocity and/or an acceleration profile. Furthermore, a human provides only few demonstrations, that cannot cover all possible contexts in which the robot will need to reproduce the motion autonomously. Therefore, the encod...
متن کاملAdaptive Voltage-based Control of Direct-drive Robots Driven by Permanent Magnet Synchronous Motors
Tracking control of the direct-drive robot manipulators in high-speed is a challenging problem. The Coriolis and centrifugal torques become dominant in the high-speed motion control. The dynamical model of the robotic system including the robot manipulator and actuators is highly nonlinear, heavily coupled, uncertain and computationally extensive in non-companion form. In order to overcome thes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- I. J. Robotics Res.
دوره 30 شماره
صفحات -
تاریخ انتشار 2011